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The paper considers the flow of an incompressible, viscous, perfectly conducting 
fluid past a fixed obstacle in the presence of an applied magnetic field which is 
parallel to the stream at large distances from the obstacle. A simple transforma- 
tion of the fluid velocity and the total head enables the magnetohydrodynamic 
flow past the obstacle to be determined from the corresponding flow of a non- 
conducting fluid past the same obstacle but with a reduced main-stream velocity. 
The method is illustrated by considering the flows past a sphere, a circular 
cylinder and a semi-infinite flat plate for different field strengths. The drag on the 
sphere is plotted as a function of the field strength for a fixed Reynolds number. 
The patterns of the flow past a circular cylinder are sketched and an inference is 
made to the way in which disturbances can propagate upstream for the case when 
the main-stream velocity is less than the Alfvkn speed. These give rise in the first 
instance to a separation bubble upstream of the cylinder. Finally the range of 
applicability of familiar high Reynolds number approximations to magneto- 
hydrodynamic flows is discussed. In  particular, if the main-stream velocity is 
equal to the Alfvh speed, the boundary-layer approximation is shown to be no 
longer valid. 

1. Introduction 
This work was initiated by some rather surprising results obtained by 

Greenspan & Carrier (1959) in their considerations of the magnetohydrodynamic 
flow past a semi-infinite flat plate. They examined the flow when the applied 
magnetic field and free-stream directions are aligned and uniform a t  large 
distances. The description of the flow depended on two parameters, namely the 
ratio p of the square of the Alfvkn speed to the square of the main-stream 
velocity, and the product of the electrical conductivity CT and the kinematic 
viscosity v. They found that when p = 1 the drag on any finite length of the 
plate became zero. This was interpreted as meaning that the magnetic field had 
become so distorted as to produce a magnetic wall which ‘plugged’ the entire 
flow. Part of the present discussion endeavours to question this result for the case 
when the fluid is perfectly conducting. It must, however, be pointed out that no 
alternative solution is proposed here for reasons which will become obvious later. 

The present discussion covers a more general field of application to fluid flows 
than the problem referred to above. Here we shall consider steady magneto- 
hydrodynamic flows past any fixed axisymmetric or two-dimensional obstacle. 
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We shall assume the fluid to be perfectly electrically conducting and consider 
only those problems for which the applied magnetic field and the undisturbed 
stream velocity are parallel a t  infinity. A transformation of the fluid velocity and 
total head in the equations of motion enables a magnetohydrodynamic flow of the 
above type to be obtained from the corresponding flow of a viscous non-conducting 
fluid, for which the well-known Navier-Stokes equations of motion are applicable. 
An interesting feature of the transformation is the relation existing between the 
Reynolds numbers of the two problems. This shows that a sp  -+ 1, for a fixed value 
of the Reynolds number R in the magnetohydrodynamic flow problem, the 
Reynolds number RN of the corresponding non-conducting fluid flow tends to 
zero. Indeed the equations of motion describing the magnetohydrodynamic flow 
then reduce almost to the Stokes equations of motion for slow flow. 

The method is applied to the magnetohydrodynamic flows past a sphere, a 
circular cylinder and a semi-infinite flat plate. In  the first of these, a plot of the 
drag of the sphere on the flow for varying magnetic field strength and a fixed 
Reynolds number is given. The graph indicates that the drag reaches a minimum 
value at = 1. The patterns of the flow past a circular cylinder for varying 
values of p are also sketched. For /3 > 1, which corresponds to the undisturbed 
fluid stream moving with a velocity less than the Alfvh speed, the transforma- 
tion indicates that the flow in the corresponding non-conducting fluid problem is 
reversed. Thus, for moderate values of RN, the separation bubble, which in con- 
ventional fluid flows occurs downstream of the cylinder, now appears upstream in 
the magnetohydrodynamic flow and corresponds to the upstream influence of 
Alfvh waves together with diffusion and convection. It is well known that, for 
purely viscous fluid flows about a sphere and a circular cylinder, the flows become 
unstable a t  certain critical Reynolds numbers. The transformation would seem to 
indicate that the effect of the magnetic field is to stabilize the flow and increase 
the values of the critical Reynolds numbers in the magnetohydrodynamic flows. 
It should however be pointed out that a fuller discussion of the unsteady flow, to 
which the simple transformation cannot be applied, is needed on this point before 
definite values can be given. 

Finally, a discussion of the flow past a semi-infinite flat plate is presented, 
though as a comment on already existing analyses i t  lacks authority because so 
little is known concerning the purely viscous fluid flow near the leading edge of the 
plate (i.e. flow at small Reynolds number). 

2. The transformation 

electrically conducting fluid can be written in the form 
The equations governing the steady motion of an incompressible, viscous, 

divq = 0, 

curl q A q = - grad ( p / p  + $q2) + vV2q + (p/p)  j A H, 

j = cr(E+,uqAH), curlH = 4nj, (394) 

divH = 0, curlE = 0. 
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In  the above equations q, p and p denote the fluid velocity, pressure and density, 
respectively, j denotes the current density, E and H the electric and magnetic 
fields. 

The present discussion is limited to magnetohydrodynamic flow problems in 
which the magnetic field is applied parallel to the direction of the free stream at 
infinity. A further restriction becomes necessary later, in choosing the ratio of 
the magnitudes of the applied magnetic field and the free-stream velocity to be 
uniform. Equation (3) shows that when the ambient magnetic field and fluid 
stream are aligned, the electric field is zero at  infinity. Assuming the flow to be 
axisymmetric or two-dimensional, the electric field satisfies the eqnation 

divE = 0. (7) 

This equation, together with equation (6) and the boundary conditions, is 
sufficient to show that, in the magnetohydrodynamic flow past an uncharged 
obstacle of the type described above, the electric field will be zero everywhere. 

For a perfectly conducting fluid, in which the electrical conductivity (r is 
infinite, equation (3) with E = 0 shows that either q or H must be zero, or q and H 
must be parallel everywhere. The former result is trivial, the latter leads to the 

where f (x, y, z )  is a function which is constant along a streamline (or magnetic- 
field line), since, from equations ( 5 )  and ( l ) ,  

0 = divH = q.gradf+fdivq = q.gradf. (9) 

If the ratio of the magnitudes of the magnetic field H, and the fluid velocity U, at 
infinity is uniform, then f is equal to Ho/U, along all streamlines originating a t  
infinity. Substituting for H in equations ( 2 )  and (4)) we obtain 

( 1  -/3) curl q A  q = - (l/p)grad h+ vV2q, (10 )  

where h = p + ipq2 is the total head and p = pH;/4rpU;. 
We now transform the velocity and total head according to the relations 

where C is a constant. qN and hN then satisfy the Navier-Stokes equations of 
flow for a viscous incompressible non-conducting fluid, namely 

div q N  = 0, (12 )  

113) curl qN A qN = - ( l / p )  grad h N +  vV2 qN. 

Hence for problems in which the ambient magnetic field and the free-stream 
directions are aligned, the pattern of the flow of a perfectly conducting fluid past 
an obstable is the same as that of a non-conducting fluid flowing with velocity 
( 1  -/3) U, past the same obstacle. The superscript N will be used to label quantities 
in the corresponding non-conducting fluid-flow problem. The total head at a point 
in the fluid is found from the corresponding non-conducting fluid-flow value by 
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the use of transformation (1  l),  the constant C being determined by the conditions 
a t  infinity. The fluid pressure is given by the relation 

where p ,  and p$ are the corresponding values of the pressures at infinity. 
The reader will notice that the above results could have been established 

by a transformation of either the length scale or the viscosity instead of the 
velocity. 

Several interesting features become apparent when the Reynolds number, 
R = U, Llv,  in the magneto-hydrodynamic-flow problem isrelated to the Reynolds 
number, RN = U$L/v,  in the analogous ‘non-conducting ’ fluid-flow problem; 
they are connected by the equation 

where the modulus signs have been inserted for obvious reasons. Thus, if R is 
fixed and /3 is increased from 0 to 1, the Reynolds number RNin the corresponding 
non-conducting fluid-flow problem decreases from R to 0. One must therefore 
tread cautiously near P = 1, for this corresponds to non-conducting fluid flows in 
which the Reynolds number R N  is small. In  particular it must be noted that in 
this region the boundary-layer approximation can no longer be used to determine 
the magnetohydrodynamic flow, since the validity of the approximation requires 
that RN = 1 1 -PI R should be large and not just simply that R should be large. A 
fuller discussion of this point and other approximations will be given later. In  the 
limit as p-+ 1 from below, equation (10) shows that the Navier-Stokes equations 
of magnetohydrodynamic flow reduce to the classical Stokes equations, provided 
that they are written in a form involving the total pressure rather than the static 
pressure. These equations are used to treat problems involving slow flow in which 
the Reynolds number is low. This is consistent with the transformation (15) which 
shows that as P -+ 1 the Reynolds number in the analogous non-conducting fluid 
flow problem becomes small. We must emphasize, however, that in the magneto- 
hydrodynamic problem for which /3 = 1 Stokes’s equations are the exact form of 
the full Navier-Stokes equations of magnetohydrodynamic flow provided that 
the total head is used instead of the static pressure. The value of /3 = 1 is in the 
nature of a critical point as it marks the transition from fluid flows having super- 
Alfvh speed to those having sub-Alfvhn speed. For /3 > 1, the transformation 
shows that the flow in the ‘non-conducting fluid ’ problem is reversed. This will be 
illustrated later. 

As an example of the use of the transformation described in this section we now 
determine the magnetohydrodynamic flow past a sphere. Clearly a similar 
analysis could be performed for the circular cylinder and other shapes. 

3. Magnetohydrodynamic flow past a sphere 
Several attempts have been made to consider this problem for fluids having low 

electrical conductivity. In  particular those of Chester (1957)  and Blerkom (1960) 
are illuminating. We are, however, concerned with a perfectly conducting fluid. 
Blerkom did include some discussion of this case in his paper and he noticed the 
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correspondence exhibited in equation (15)  by examining the Oseen linearized 
equations extended to include the effects of a magnetic field. He did not, however, 
pursue the matter further. 

A study of the magnetohydrodynamic flow past a sphere has several advan- 
tages; in particular the drag of the sphere in a non-conducting fluid flow is known 
experimentally as a function of the Reynolds number. In  addition, the Stokes 
solution describing the slow flow past a sphere is known. 

The use of relation ( 1 5 )  and the experimental information permit a very simple 
method of determining the drag of a sphere in a magnetohydrodynamic flow of 
the type already described. The experimental results, which have been used here, 

P 
FIGURE 1. The ratio of the drag D to the Stokes value D, plotted as a function of the 

Alfvkn number p for values of the Reynolds number R = 40, 20 and 8. 

are those given by Goldstein (1938), who plots the drag coefficient C$ in the non- 
conducting fluid flow problem as a function of RN = 2UNa/v, where a is the 
radius of the sphere. In  order to find how the drag of a sphere in the magneto- 
hydrodynamic flow depends upon the strength of the applied magnetic field, we 
fix the value of R and vary /3, thus obtaining varying values of RN from equa- 
tion (15). The values of (7% are then determined from the graph of (7% against RN. 
The drag D in the magnetohydrodynamic problem is then calculated from a 
knowledge of C% in the following way: 

D = (1-/3P)-lDN= 1 s p  7~ v 2 (l-/3)-l(RN)2C% = $pnv2(1-/3)R2C%. (16) 

In  figure 1 the total drag D is plotted as a function of /3 for values of R equal to 8, 
20 and 40. For /3 > 1, the flow in the corresponding non-conducting fluid problem 
is reversed, so that the drag DN will act in the opposite direction to that of the 
free stream in the magnetohydrodynamic problem. However, the drag D is still 
positive, since the negative factor ( 1  -/?) in equation (16) means that D is in the 
direction opposite to DN. 
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The variation of the drag in the neighbourhood of the critical point p = 1 can 
be discussed by using the theoretical results of Proudman & Pearson (1957), who 
considered the slow flow of a viscous fluid past a sphere. They gave the drag 
coefficient for small values of RN as 

24 
Cg = { 1 + &RN + =& (RN)’ log RN + O(RN)’}. 

Applying the transformation rules and substituting in equation (16), we obtain 

D = ~TPVCCU,(~ +& 11 -@I R+i& (1 -,8)2 R’10g 11 -PI R+ O[(l -/3)’ER2]). (18) 

The above expression will hold for both sufficiently small values of R and of 
I 1 - 61. For a fixed value of R as /3 --f 1 the drag reaches a minimum value, which 
is the classical Stokes value; this was anticipated in our earlier discussion. At the 
critical point, p = 1, the slope of the drag curve is discontinuous. This is due to 
the different character of the flow in changing from super-Alfvkn to sub-Alfv6n 
flow, in which Alfvth waves can propagate upstream. These could affect the flow 
a t  infinity. However, when p > 1, the corresponding flow in the non-conducting 
fluid problem is reversed. For low values of (p  - 1) R the non-conducting fluid 
flow solution would suggest that the uniform conditions upstream at infinity are 
not affected. This will be illustrated in the next section. For higher values of 
(p- 1) R the flow might contain a narrow wake in the magnetohydrodynamic 
flow extending upstream from the body (the wake in the reversed non-conducting 
fluid flow problem is downstream), in which case the uniform conditions upstream 
a t  infinity would be upset. This situation has been discussed by Stewartson (1960). 
It must be pointed out though that, if in the magnetohydrodynamic flow problem 
the conditions downstream at infinity were uniform, the transformation could be 
applied provided that the flow was steady. There seems to be no reason to suppose 
that this is inferior to the more usual reversed situation. It must however be 
mentioned that for a fluid having finite electrical conductivity there would also 
be a wake downstream. This has not been considered in the present paper. One 
further remark should also be made concerning the stability of the flow. It is well 
known both from experiment and theory that, for viscous non-conducting fluid 
flows of the type described, there is a critical Reynolds numger for which the flow 
becomes unsteady. Experimentally this occurs for the flow about a sphere at a 
Reynolds number of about 100. Thus, according to the transformation (15), the 
magnetohydrodynamic flow might become unsteady at  a Reynolds number of 
about loo/] 1 -PI from which we might infer that, for 0 < p < 2,  the effect of the 
magnetic field is to stabilize the flow. However, since the transformation is 
limited to steady flows only, a fuller investigation should be carried out before 
reaching any definite conclusions on this point. 

4. Variation of the flow pattern with /3 
In  order to discuss flow patterns for varying magnetic field strengths it is con- 

venient to consider the uniform flow past a circular cylinder, since numerical 
computations of the corresponding flows of a viscous non-conducting fluid have 
been made for values of RN = 10,20 and 40 by Thorn (1933) and Kawaguti (1953). 



Magnetohydrodynamic flows 525 

(4 
FIGURE 2. Streamlines (or magnetic lines) and lines of equal vorticity (or current) for the 
flow about a circular cylinder with R = 40 and p = 0, t ,  8 and 2. (a) /3 = 0, RN = 40 
Kawaguti 1953). ( b )  /3 = 4, RN = 20 (Thom 1933). (c) p = 2, RN = 10 whom 1933). 
(d) = 2, R N  = 40 (Kawaguti 1953). 
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As long as RN = 11 --PI R is less than about 40, the non-conducting fluid flow 
remains steady and we can apply the transformation procedure. Thus if we 
fix R = 40, the above computations will give immediately the magnetohydro- 
dynamic flow patterns for values ofp = 0, i, 2, i, $ and 2. In figure 2, the stream- 
lines (or magnetic lines) and lines of equal vorticity (or current) are shown for 
,8 = 0, 9,; and 2. 

As the magnetic field increases, the separation bubble containing the two 
standing eddies becomes smaller until it eventually disappears for p sufficiently 
near unity. As ,8 increases from 1, the separation bubble appears upstream and 
grows with increasing p; ultimately the flow will become unsteady. There is no 
obvious reason for the separation bubble to behave in this way with increasing 
magnetic field strength. Clearly it is linked with the factors which govern the 
length of the separation bubble in the purely viscous fluid-flow problem. Un- 
fortunately for the purpose of this paper no simple explanation has been offered. 
Presumably its length in the latter problem depends on both convection and 
diffusion, and the effect of the magnetic field in the magnetohydrodynamic flow 
is to decrease the convective part, as equation (10) shows, by the presence of the 
factor 1 -,8. As the magnetic field increases, the Lorentz force becomes more 
dominant and produces a ‘convective’ rate in the opposite direction to the 
stream velocity. It is well known, in fact, that in a magnetic field the vorticity is 
not convected with the stream, but rather moves relative to the stream at the 
Alfvhn speed along the magnetic lines of force. Thus in sub-Alfvbn flow (p > l), the 
wake must stretch upstream as well as downstream. It has already been men- 
tioned that, if finite but large conductivity had been considered, then there would 
also be a wake on the downstream side as well as the upstream side. Blerkom 
(1960) has discussed this situation for the case of the flow past a sphere by applying 
the Oseen linearized treatment to  the equations of motion. 

5. Flow past a flat plate 
Several attempts have been made to discuss the magnetohydrodynamic flow 

past a flat plate. In  particular Greenspan & Carrier (1 959) have discussed the flow 
when the magnetic-field and free-stream directions are aligned and uniform a t  
large distance from the plate. They examined the flows for the full range of values 
of g = u-pv and p and found that, when /3 2 1, no steady flow which is uniform at 
large distance from the plate is possible. Their calculations were based on two 
treatments, namely the use of the asymptotic form of the solution of the Navier- 
Stokes equations in terms of parabolic co-ordinates and the solution of the 
classical Oseen linearized equations. They then predicted that at  p = 1 the drag 
on any finite length of the plate was zero. This was interpreted as meaning that 
the magnetic field had been so distorted as to produce a magnetic wall which 
‘plugged’ the entire flow. By the uae of the transformation described in the 
previous sections, we can discuss this situation for the case of a perfectly electri- 
cally conducting fluid. To find an approximation for the drag on the plate we use 
a result due to Imai (1957), who considered the viscous flow past a flat plate by 
using a series solution in inverse powers of the square root of the Reynolds 
number RF = UNx/v based upon the distance x from the leading edge. The full 
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solution also included logarithmic terms, but the retention of the first two terms 
in the expansion for the drag will suffice for the present discussion: this gives 

1.328 2.326 
DN = i p ~ ( U ~ ) ~  ~ [ (R2)h $- 7 $- "*I 

for sufficiently large RZ. 
Applying the transformation, the drag D of the flat plate in magnetohydro- 

dynamic flow is obtained, 

The first term only in expression (20) was obtained by Greenspan & Carrier, from 
which they concluded that as P -+ 1 the drag became zero. It is seen, however 
that the above expression is no longer valid as p + 1, since the above approxi- 
mate treatment requires that RT = (1  -P )  R, should be large. For the same 
reason, one also questions the applicability of the Oseen approximation to the 
problem in the region of the critical point which corresponds to slow flow in 
the analogous non-conducting fluid-flow problem. Since there does not exist an 
adequate theory which deals successfully with the slow flow past a semi-infinite 
flat plate, that is in the region of the leading edge, a fuller discussion is prevented 
a t  present. What can, however, be said with certainty is that any attempt to 
discuss the critical region about p = 1 by making the usual boundary-layer 
approximation will be doomed to failure. 

For the case P > 1, it is immediately obvious why no solution could be found 
for the flow past a semi-infinite flat plate, since the transformation indicates that 
the flow in the corresponding non-conducting fluid problem is reversed, that is 
the flow will be travelling from right to left over each side of the semi-infinite flat 
plate (0  < x < 00). Thus in the magnetohydrodynamic problem, no steady flow 
which is uniform at a large distance upstream of the plate could be possible in 
such a case. If one had considered a flat plate of finite length then a solution 
would exist and there would be a 'wake ' upstream of the leading edge of the plate, 
the extent of the wake depending on the magnitude of (p-  1) R, and very little 
disturbance downstream of the trailing edge. Greenspan & Carrier (1959) revealed 
this effect, and found that, for finite conductivity and p > 1, the effects of the 
plate were as prominent upstream as they were downstream. For infinite con- 
ductivity the effect is most prominent upstream. Greenspan (1960) has con- 
sidered this effect further. 

6. Conclusions 
Though the theory advanced in this paper is simple and enables one to predict 

the possible behaviour of a perfectly electrically conducting fluid past a fixed 
obstacle, the author is aware of some of the difficulties which it presents. In 
particular, in obtaining the drag of a sphere and the patterns of the flow past a 
circular cylinder, it  has been tacitly assumed that p remains constant throughout 
the entire flow. The reader is reminded that this depended on the choice of a 
constant value for the functionfin equation (8). This can be justified for the case 
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when all streamlines originate from a uniform region at  infinity. However, in the 
flows which have been illustrated, a separation bubble has occurred and here the 
streamlines are closed. On these streamlines the function f, though constant 
along them, cannot be determined explicitly on the simple basis of steady flow 
and in assuming the electrical conductivity to be large. This indeterminancy is 
similar to the one experienced in the steady frictionless flow in a confined region, 
for which the velocity distribution cannot be obtained purely on the basis of an 
inviscid fluid model. Batchelor (1956) has discussed this latter problem and has 
shown how this indeterminancy can be overcome by the use of an integral 
condition arising from the effect of viscosity, no matter how small it  may be. In  
the steady two-dimensional flow of an inviscid fluid it is well-known that the 
vorticity is constant along streamlines, but that it may vary from one streamline 
to another. Viscous effects allow the vorticity to diffuse across the streamlines 
until a uniform value is reached. A similar situation appears to exist in the case 
of magnetohydrodynamic flow, except that one must consider the effect of finite 
electrical conductivity. Unfortunately the equations do not yield any simple 
integral condition of the type found by Batchelor. A fuller analysis is required 
which takes into account the perturbations due to large but finite conductivity. 
It is hoped to pursue this matter further, and if necessary to solve numerically 
for the unsteady flow of a fluid of finite electrical conductivity. 

One final comment should be made. Equation (8) shows that at  the surface of 
the obstacle the magnetic field H will be zero; the current density j will in general 
be non-zero. However a glance at  Ohm’s law, equation (3), with E = 0, shows 
that, if large but finite electrical conductivity had been considered, j = 0 on the 
surface. Thus a magnetic boundary layer must be considered near the surface in 
which the magnetic field diffuses in such a way that j becomes zero at the surface. 
This has been discussed by Glauert (1961), who was able to show that for the flow 
past a flat plate the perfect conductivity solution gives the correct limiting skin 
friction. The tangential component of the magnetic field at the surface was found 
to be of O(&) as e = pav becomes large. 
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